Design and Development of a Web-Based Maintenance Employee Management Application Using Laravel Framework

Moch Aldi Hardiansyah¹; Bambang irawan¹;
Department of Informatics Engineering, Faculty of Computer Science

¹Esa Unggul University
Harapan Indah Boulevard No.4, Harapan Indah City Bekasi
mochamadaldihardiansyah@student.esaunggul.ac.id;

*Corresponding author: Bambang.irawan@esaunggul.ac.id

Received January 2025; accepted February 2025

ABSTRACT

This research focuses on the design and development of a web-based application for managing maintenance employees at a leading automotive components manufacturing company. The current manual system for managing maintenance employees has led to inefficiencies in maintenance task scheduling, slow reporting processes, increased risk of data recording errors, and potential loss of important information. To address these issues, a web-based application using the Laravel framework was developed to integrate all aspects of maintenance employee management. The Laravel framework was chosen for its ease of development, robust security features, and extensive community support. The application enables the company to manage employee data, create maintenance schedules, monitor performance, and generate automated real-time reports. This study implemented a digitalized maintenance employee management system to replace the manual system, developed effective scheduling and performance monitoring features, and created an automated reporting system that provides real-time information. The benefits include improved efficiency in managing maintenance employee data, optimized scheduling and task distribution, minimized risk of errors in data recording and management, and facilitated decision-making based on accurate and real-time reports. Through the development of this application, the operational efficiency of the company is expected to improve, supporting sustainable growth and optimizing human resource utilization in the maintenance department.

Keywords: Web Application, Laravel, Maintenance Employee Management, Information System, Digitalization.

1. Introduction

The digital transformation of industrial processes has become crucial for manufacturing companies to maintain competitiveness in today's rapidly evolving business environment. One of the key areas that requires effective management is the maintenance department, which plays a vital role in ensuring continuous production operations. The management of maintenance employees, their tasks, schedules, and performance evaluation has traditionally been conducted through manual, paper-based systems in many manufacturing facilities.[1]

Manual maintenance employee management systems present several challenges, including inefficient task scheduling, delayed reporting processes, increased risks of data recording errors, and potential loss of critical information. These issues can lead to reduced productivity, increased downtime, and higher operational costs. As manufacturing companies strive for operational excellence, there is a growing need to digitalize maintenance employee management systems to improve efficiency, accuracy, and decision-making capabilities.[2]

Web-based applications offer a promising solution to address these challenges by providing an integrated platform for managing all aspects of maintenance employee operations. The Laravel framework, with its robust features, security, and extensive community support, presents an ideal platform for developing such applications. By leveraging web technologies, companies can create systems that enable real-time monitoring, automated reporting, and efficient resource allocation.[3]

This research focuses on the design and development of a web-based maintenance employee management application using the Laravel framework. The application aims to replace manual systems with a digitalized solution that streamlines employee data management, task scheduling, performance monitoring, and reporting processes. By implementing this application, manufacturing companies can expect to achieve higher operational efficiency, better resource utilization, and improved decision-making capabilities based on accurate, real-time data.[4]

2. Methodology

2.1 System Requirements Analysis

The initial phase involved gathering and analyzing requirements from stakeholders in the maintenance department. This included interviews with maintenance managers, supervisors, and employees to understand their workflows, pain points, and needs [5]. The analysis of system needs is divided into, functional needs, non-functional needs, and development needs:

2.1.1 Functional Needs Analysis

Functional Needs Analysis is the process of identifying and defining the main functions that a system must have to meet user requirements. These needs include the features and services that the system must provide without considering how the system will be technically implemented [6].

The analysis of the functional requirements for the system to be developed is shown in Table 1.

Table 1: Functional Needs

No	Functional Needs		Role	
			Leader	MTN
1	The system can perform login using email and password.	Yes	Yes	Yes
2	The system can display the dashboard page.	Yes	Yes	Yes
3	The system can add section data.		No	No
4	The system can update section data.	Yes	No	No
5	The system can add line data.	Yes	No	No
6	The system can update line data.	Yes	No	No

7	The system can add machine data.	Yes	No	No
8	The system can update machine data.		No	No
9	The system can add user data.		No	No
10	The system can update user data.	Yes	No	No
11	The system can display a summary of the number of users, machines,		No	No
	lines, and sections.			
12	The system can display the orders page.	Yes	Yes	Yes
13	The system can display the schedule page.	Yes	Yes	Yes
14	The system can display the reports page.	Yes	Yes	Yes

2.1.2 Non-Functional Needs Analysis

Non-Functional Needs Analysis is the process of identifying and defining the characteristics or qualities that a system must have to function optimally. These needs are not directly related to the system's features or services (what the system does), but rather to how the system operates.[7]

The non-functional requirements for the system to be developed are listed in Table 2.

Table 2: Non- Functional Needs

No	Non- Functional Needs	
1	The system must provide a fast response time to user requests.	
2	The system must be available at all times with minimal downtime.	
3	The system must have a strong authentication system and allow access only to authorized users.	
4	The system must be designed to use hardware resources efficiently.	
5	The user interface must be responsive across various devices and screen sizes.	

2.2 System Design

Based on the requirements analysis, the system architecture was designed. This phase included creating database schemas, defining system modules, and designing user interfaces.[7]. Entity Relationship Diagrams (ERD) and Class Diagrams were developed to model the data structure and relationships. Use Case Diagrams were created to visualize the system's functionality from the user's perspective.

2.2.1 Entity Relationship Diagram (ERD)

ERD is a diagram to visually depict the logical structure of an employee database.[8]. This diagram is used to show relationships between employees or objects.

The following depicts the Entity-Relationship Diagram (ERD) for the developed

system, as illustrated in Figure 1

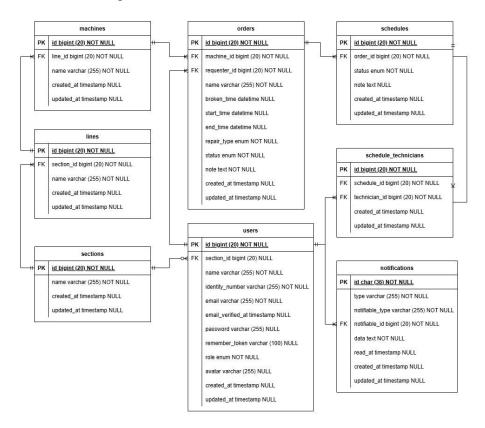


Figure 1. Entity Relationship Diagram (ERD)

2.2.2 Class Diagram

Class Diagram is used to to model the structure of an object-oriented system. This diagram represents the classes within the system along with their attributes, methods, and relationships between classes.[9]

The following illustrates the Class Diagram of the system to be developed, as shown in Figure 2.

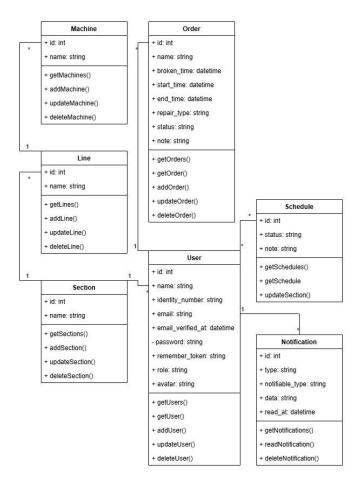


Figure 2. Class Diagram

2.2.3 Use Case Diagram

Use Case Diagram is used to model the interaction between users (actors) and the system. This diagram illustrates how the system is used from the user's perspective, highlighting the main functions (*use cases*) provided by the system.[10]

The following illustrates the Use Case Diagram of the system to be developed, as depicted in Figure 3.

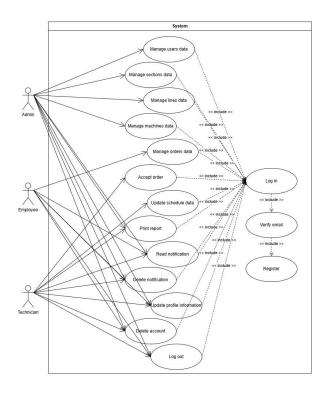
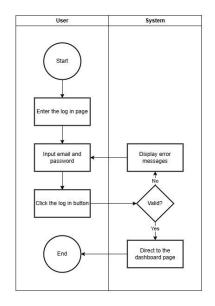
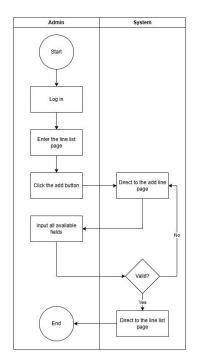



Figure 3. Use Case Diagram

2.2.4 Activity Diagram

The Activity Diagram is a visual representation of the workflow or business process within a system, delineating the execution steps for activities within a software system [11]. Figure 4 represents the Login activity, while Figure 5 illustrates the Logout process. Figures 6 through 9 showcase the addition of a line, the acceptance of an order, the addition of a machine, and the addition of an order, respectively. Figures 10 and 11 depict the deletion of an account and a notification. Figure 12 presents the function of printing a report, and Figure 13 illustrates the process of reading a notification. Figures 14 and 15 represent the updating of a profile and schedule, respectively. Finally, Figures 16 and 17 illustrate the registration of a new user and the verification of an email, respectively.


Click the dropdown button on the lop right

Choose the log out menu

Direct to the log in page

Figure 4. Login

Figure 5. Logout

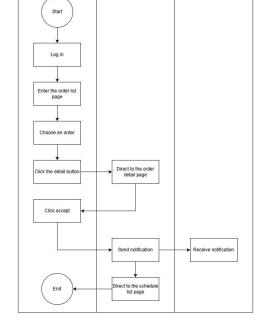


Figure 6. Add-line

Figure 7. Accept-order

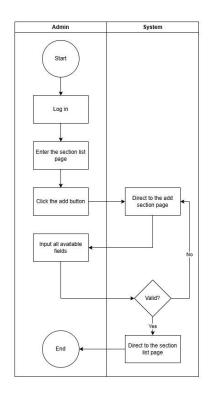


Figure 8. Add-Machine

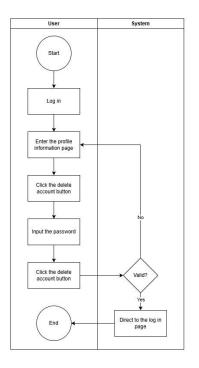


Figure 10. Delete-Account

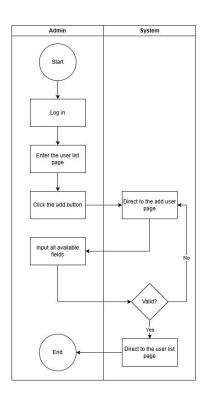


Figure 9. Add-order

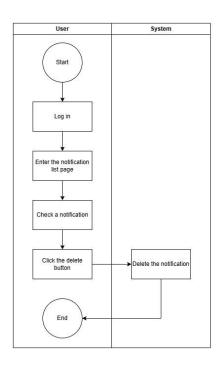
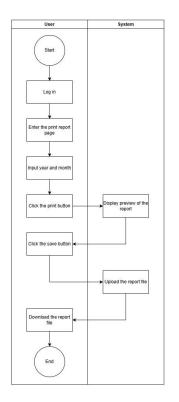



Figure 11. Delete-Notification

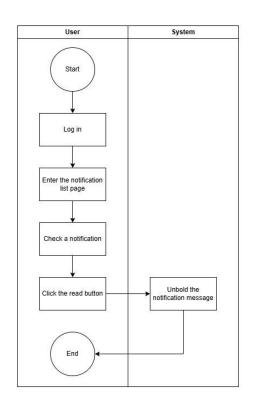
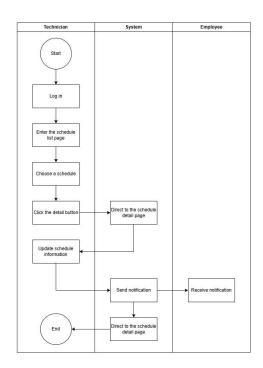



Figure 12. Print-Report

Figure 13. Read-Notification

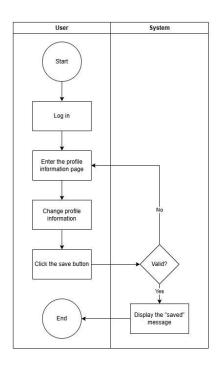


Figure 15. Update-Schedule

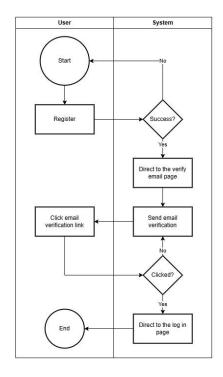


Figure 16. Register

Figure 17. Verify-Email

3. Results and Discussion

3.1 Implementation

The application was deployed in a controlled environment, with data migration from the existing manual system.[12]. Training sessions were conducted for all users to ensure smooth adoption of the new system. A phased implementation approach was used to minimize disruption to ongoing maintenance operations.

The following is the user interface implementation using the Laravel framework:

Login Page

On the login page, there is a form for logging in using a registered email and password. As shown in the figure 18.

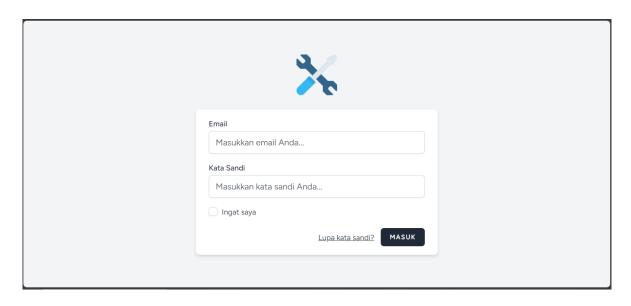


Figure 18. Login Page

o Dashboard Page

On the dashboard page, there is a list of employee orders for machines that are damaged on the respective line, as well as the maintenance schedule showing which lines are currently being worked on. As shown in the figure 19.

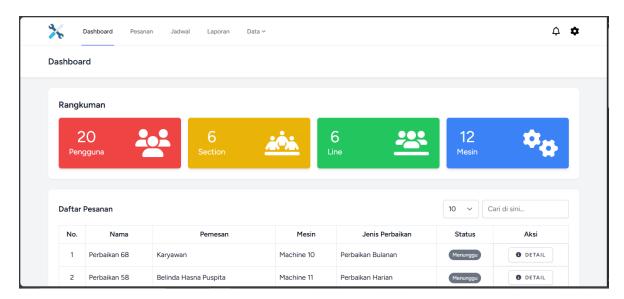


Figure 19. Dashboard Page

User List Page

On the user list page, there is a table displaying the list of users, an "Add" button to add new users, a search bar to find users, an "Edit" button to modify user data, and a "Delete" button to remove users. As shown in the figure 20.

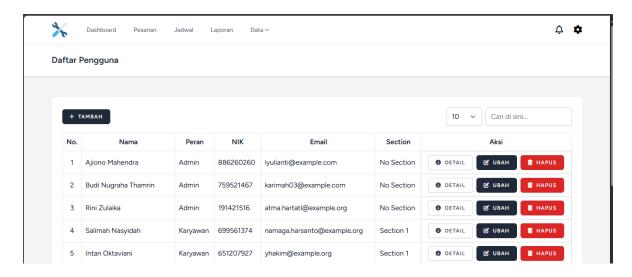


Figure 20. User List Page

o Add User Page

On the add user page, there are several fields that must be filled in, including **name**, **role**, **section**, **image**, **NIK**, **email**, **and password**. Additionally, there are "**Save**" and "**Cancel**" buttons to add the user or cancel the action and return to the user list page. As shown in the figure 21.

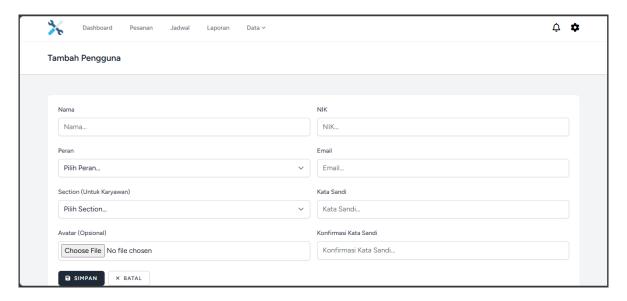


Figure 21. Add User Page

o Edit User Page

On the edit user page, there are several fields that must be filled in, including **name**, **role**, **section**, **image**, **NIK**, **email**, **and password**. Additionally, there are "**Save**" and "**Cancel**" buttons to update the user or cancel the action and return to the user list page. As shown in the figure 22.

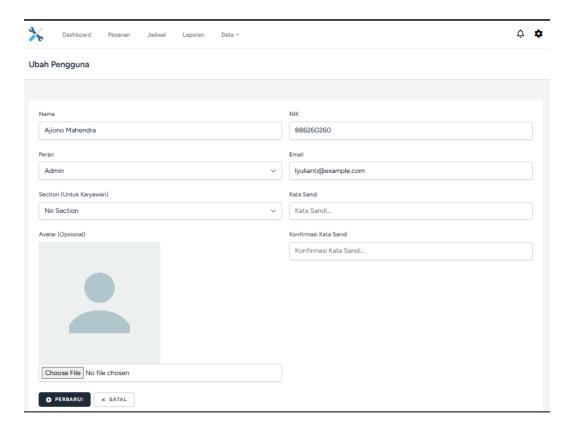


Figure 22. Edit User Page

o Orders Page

On the orders page, users can view a list of orders created by employees for damaged machines. Additionally, the order status can be seen, whether it is **waiting**, **accepted**, **or completed**, as confirmed by the technician. As shown in the figure 23.

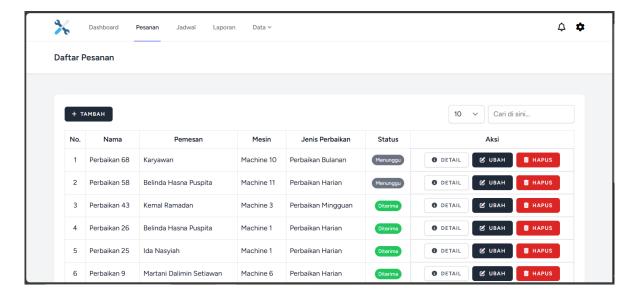


Figure 23. Orders Page

Request Repair Page

On this page, employees can submit a repair request for a damaged machine. Several fields must be filled in, including **repair name**, **machine name**, **breakdown time**, **type of repair**, **start time**, **end time**, **and notes**. Additionally, there are "Save" and "Cancel" buttons to submit the repair request or cancel the action. As shown in the figure 24.

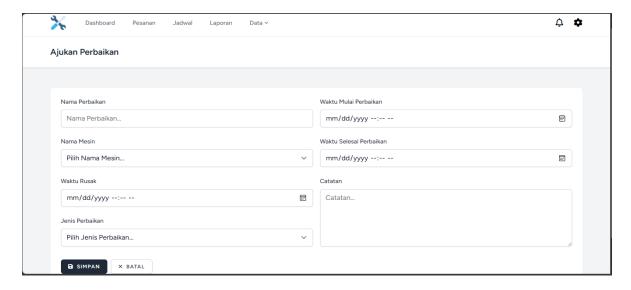


Figure 24. Request Repair Page

Edit Repair Request Page

On this page, employees can modify a submitted repair request for a damaged machine. Several fields must be filled in, including **repair name**, **machine name**, **breakdown time**, **type of repair**, **start time**, **end time**, **and notes**. Additionally, there are **"Save"** and **"Cancel"** buttons to update the repair request or cancel the action. As shown in the figure 25.

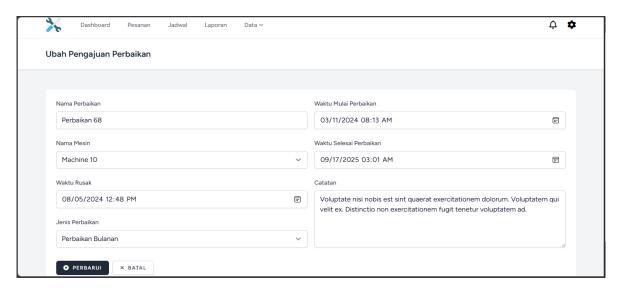


Figure 25. Edit Repair Request Page

o Schedule Page

On this page, users can only view the schedule of technician and employee activities in handling machine damage cases. As shown in the figure 26.

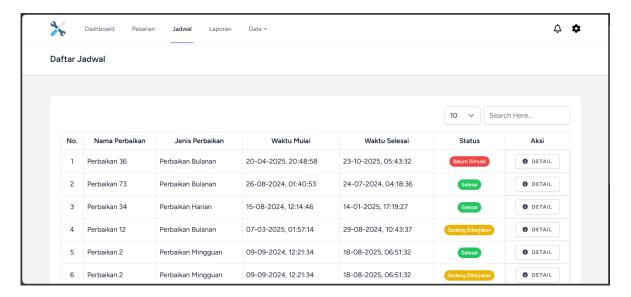


Figure 26. Schedule Page

o Report Page

On this page, users can view **monthly and annual report transcripts**, which can then be exported to **PDF** for printing. As shown in the figure 27.

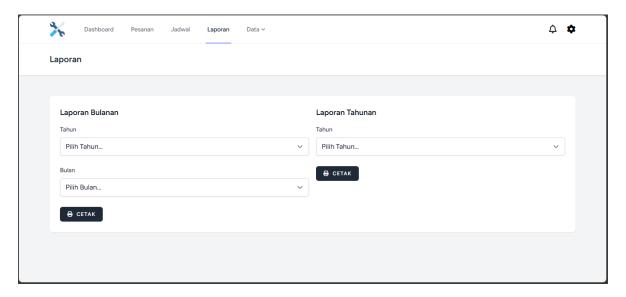


Figure 27. Report Page

3.2 System Testing

Black Box Testing is a software testing method that focuses on system functionality without examining the source code. Testers only observe the input and output to ensure that

the system works according to the specifications.[13]

The results of the system testing for the developed system are presented in Tables 3 to 8.

3.2.1 Login Page Testing

The following is the testing conducted on the login page:

Table 3: Login Page Testing

No	Testing	Result	Conclusion	
1	Login using a registered account	User diarahkan ke halaman dashboard.	OK	
2	Login using an unregistered	Muncul pesan error pada form login dan user tetap	OK	
	account	berada di halaman login.	OK	

3.2.2 Dashboard Page Testing

The following is the testing conducted on the dashboard page:

Table 4: Dashboard Page Testing

No	Testing	Result	Conclusion
1	Employee creates a maintenance technician order for machine repair.	There is a list of orders including the orderer's name, machine, type of repair, and status, with the status showing as "waiting" (not yet accepted).	ОК
2	Employee creates a maintenance technician order for machine repair.	There is a list of orders including the orderer's name, machine, type of repair, and status, with the status showing as "accepted."	ОК
3	Technician schedule list showing machines under repair.	The schedule list displays the name, type, time, and status (not started).	ОК
4	Technician schedule list showing machines under repair.	The schedule list displays the name, type, time, and status (in progress).	ОК
5	Technician schedule list showing machines under repair.	The schedule list displays the name, type, time, and status (completed).	OK

3.2.3 Order Page Testing

The following is the testing conducted on the orders page:

Table 5: Order Page Testing

No	Testing	Result	Conclusion
1	Employee creates a maintenance	The page will navigate to fill in the repair request	
	technician order for machine	data.	OK
	repair by pressing "Add."		
2	Submit repair after filling in the	The repair request will be saved and appear on the	OK
	details and pressing "Save."	dashboard or schedule page.	
3	Submit repair after filling in the details and pressing "Cancel."	The repair request will be deleted and the page will return to the orders page.	OK

3.2.4 Schedule Page Testing

The following is the testing conducted on the schedule page:

Table 6: Schedule Page Testing

No	Testing	Result	Conclusion
1	The schedule page will display the	The technician schedule will be available after the	
	repair schedule if the technician	employee fills in the order.	OK
	order is filled in by the employee.		

3.2.5 Report Page Testing

The following is the testing conducted on the Report page:

Table 7: Report Page Testing

No	Testing	Result	Conclusion
1	The report will be available once the employee's order is completed by the technician.	The report is saved and can be printed	OK

3.2.6 Data Addition Page Testing

The following is the testing conducted on the data addition page:

Table 8: Data addition Page Testing

No	Testing	Result	Conclusion
1	Section data is added by the admin.	New section data has been successfully added.	OK
2	Line data is added by the admin.	New line data has been successfully added.	OK
3	Machine data is added by the admin.	New machine data has been successfully added.	OK
4	User data is added by the admin.	New user data has been successfully added.	OK

4. Conclusions

The application streamlines the task scheduling process for maintenance employees, thereby enhancing the organization and transparency of work allocation [15]. As a web-based solution, it provides flexible access from various devices, thereby improving ease of use and operational efficiency within the maintenance division.

The Laravel framework was selected due to its robust security, ease of development, and extensive features, which support the creation of a scalable and reliable web-based system [14]. Overall, the developed application is anticipated to improve work efficiency, minimize the risk of errors in manual records, and aid the company in optimizing human resource management, particularly within the maintenance division.

REFERENCES

- [1] M. Savastano, C. Amendola, F. Bellini, and F. D'Ascenzo, "Contextual impacts on industrial processes brought by the digital transformation of manufacturing: A systematic review," *Sustainability* (*Switzerland*), vol. 11, no. 3, Feb. 2019.
- [2] M. G. S. Aboelmaged, "E-maintenance research: a multifaceted perspective," *Journal of Manufacturing Technology Management*, vol. 26, no. 5, pp. 606–631, Jun. 2015.
- [3] K. Benmoussa, M. Laaziri, S. Khoulji, M. L. Kerkeb, and A. El Yamami, "A new model for the selection of web development frameworks: Application to PHP frameworks," *International Journal of Electrical and Computer Engineering*, vol. 9, no. 1, pp. 695–703, Feb. 2019,.
- [4] A. Hassanat Adepoju, B. Austin-gabriel, A. Eweje, and A. Collins, "Framework for Automating Multi-Team Workflows to Maximize Operational Efficiency and Minimize Redundant Data Handling," 2022.
- [5] F. Heriyanti and A. Ishak, "Design of logistics information system in the finished product warehouse with the waterfall method: Review literature," in *IOP Conference Series: Materials Science and Engineering*, Institute of Physics Publishing, Jun. 2020.
- [6] A. Hassanat Adepoju, B. Austin-gabriel, A. Eweje, and A. Collins, "Framework for Automating Multi-Team Workflows to Maximize Operational Efficiency and Minimize Redundant Data Handling," 2022.
- [7] L. Tóth and L. Vidács, "Study of Various Classifiers for Identification and Classification of Non-Functional Requirements." 2019.
- [8] E. Ansari, "WEB BASED EMPLOYEE MANAGEMENT SYSTEM," 2019.
- [9] M. Mukherjee and ; M Mukherjee, "Object-Oriented Analysis and Design," 2016.

- [10] M. N. Arifin and D. Siahaan, "Structural and Semantic Similarity Measurement of UML Use Case Diagram," *Lontar Komputer: Jurnal Ilmiah Teknologi Informasi*, vol. 11, no. 2, p. 88, Jul. 2020.
- [11] H. Chen, J. M. Jiang, Z. Hong, and L. Lin, "Decomposition of UML activity diagrams," *Softw Pract Exp*, vol. 48, no. 1, pp. 105–122, Jan. 2018.
- [12] J. Rao *et al.*, "Data migration in the cloud database: A review of vendor solutions and challenges," ~ 96 ~ *International Journal of Computing and Artificial Intelligence*, vol. 3, no. 2, 2022.
- [13] Y. Irawan, S. Muzid, N. Susanti, and R. Setiawan, "System Testing using Black Box Testing Equivalence Partitioning (Case Study at Garbage Bank Management Information System on Karya Sentosa)," European Alliance for Innovation n.o., Feb. 2019.
- [14] M. Amini *et al.*, "MAHAMGOSTAR.COM AS A CASE STUDY FOR ADOPTION OF LARAVEL FRAMEWORK AS THE BEST PROGRAMMING TOOLS FOR PHP BASED WEB DEVELOPMENT FOR SMALL AND MEDIUM ENTERPRISES," 2020.
- [15] S. Bouzidi-Hassini, F. Benbouzid-, S. Tayeb, F. Marmier, M. Rabahi, and F. Marmier, "Considering human resource constraints for real joint production and maintenance schedules," 2015.