Flood Prediction with Naive Bayes Method

Authors

  • Martin Saputra Esa Unggul University Author

Keywords:

K-Means, Naïve Bayes, Flood, DKJ, Prediction.

Abstract

The problem of traffic jams in the Special Region of Jakarta (DKJ) includes various kinds of traffic problems in Jakarta, including traffic jams and flooding. According to the Journal of Sustainable Development Education and Environment, land is lacking for housing, industrial development, and urbanization. The development of an urban area can be influenced by the rapid rate of urbanization, which requires a lot of land, while land in urban areas is relatively minimal. In the literature journal related to the research that will be studied using the Naïve Bayes Algorithm and K-Means Clustering, it can be concluded that it can be used to predict the 2025 flood. The above research results are provided in the form of diagrams, codes, and dashboards, which have a value of results. From the results of clustering using the K-Means method, a water level prediction of 0.96 x 100% = 96% of the data in clustering is very accurate, with an average accuracy of 97% when there is a flood. From the research conducted by the researcher, it can be concluded that data mining is processed through an algorithm. The use of the algorithm affects the data processing results. The researcher used the Naïve Bayes based on the Reference Journal related to the best algorithm in data mining processing. The results of data mining processing are in the form of a curve that can be presented to readers to estimate whether a flood disaster will occur.

Downloads

Download data is not yet available.

References

[1] J. Pendidikan et al., “ANALISIS PENYEBAB BANJIR DI DKI JAKARTA”, doi: 10.21009/PLPB.221.05.

[2] T. Amalina, D. Bima, A. Pramana, and B. N. Sari, “Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food,” Jurnal Ilmiah Wahana Pendidikan, vol. 8, no. 15, pp. 574–583, 2022, doi: 10.5281/zenodo.7052276.

[3] Y. S. Sari, “Penerapan Metode Naïve Bayes Untuk Mengetahui Kualitas Air Di Jakarta,” Jurnal Ilmiah FIFO, vol. 13, no. 2, p. 222, Nov. 2021, doi: 10.22441/fifo.2021.v13i2.010.

[4] P. Prakoso and H. Herdiansyah, “ANALISIS IMPLEMENTASI 30% RUANG TERBUKA HIJAU DI DKI JAKARTA,” MAJALAH ILMIAH GLOBE, vol. 21, no. 1, p. 17, Apr. 2019, doi: 10.24895/mig.2019.21-1.869.

[5] A. Taryana, M. Rifa, E. Mahmudi, and H. Bekti, “ANALISIS KESIAPSIAGAAN BENCANA BANJIR DI JAKARTA,” 2022.

[6] S. Sandiwarno, “Penerapan Machine Learning Untuk Prediksi Bencana Banjir,” Jurnal Sistem Informasi Bisnis, vol. 14, no. 1, pp. 62–76, Jan. 2024, doi: 10.21456/vol14iss1pp62-76.

[7] M. Safii, B. Efendi Damanik, and G. Artikel, “Algoritma Naïve Bayes Untuk Memprediksi Penjualan Pada Toko VJCakes Pematang Siantar Naïve Bayes Algorithm For Predicting Sales at the Pematang Siantar VJCakes Store Article Info ABSTRAK,” JOMLAI: Journal of Machine Learning and Artificial Intelligence, vol. 1, no. 4, pp. 2828–9099, 2022, doi: 10.55123/jomlai.v1i4.1674.

[8] K. Steven, S. Hariyanto, R. Arijanto, and A. H. Wijaya, “PENERAPAN BUSINESS INTELLIGENCE UNTUK MENGANALISIS DATA PADA PT. SURYAPLAS INTITAMA MENGGUNAKAN MICROSOFT POWER BI,” 2021. [Online]. Available: https://jurnal.buddhidharma.ac.id/index.php/algor/index

[9] R. Maharani, A. Hutagaol, V. Tesalonika Lana, Z. A. Dzunnurain, and R. Kurniawan, “Penerapan Machine Learning dalam Prediksi Klasifikasi Big Data Kedalaman Gempa Bumi di Indonesia Tahun 2015-2024,” Seminar Nasional Sains Data, vol. 2024.

[10] Aisyah, N. Fahira, and R. Nooraeni, “Optimasi Parameter ST-DBSCAN dengan KNN dan Algoritma Genetika Studi Kasus: Data Bencana Alam di Pulau Jawa 2021.”

[11] S. M. Natzir, “Perbandingan Kinerja Model Pembelajaran Mesin dalam Prediksi Banjir menggunakan KNN, Naive Bayes, dan Random Forest,” p. 59, doi: 10.52972/hoaq.vol14no1.p59-64.

[12] A. Zumarniansyah, R. Pebrianto, ; Normah, and W. Gata, “TWITTER SENTIMENT ANALYSIS OF POST NATURAL DISASTERS USING COMPARATIVE CLASSIFICATION ALGORITHM SUPPORT VECTOR MACHINE AND NAÏVE BAYES.” [Online]. Available: www.nusamandiri.ac.id

[13] A. Frenica and S. Soim, “Implementasi Algoritma Support Vector Machine (SVM) untuk Deteksi Banjir,” vol. 8, no. 2, p. 2023.

[14] I. Sugiyarto, R. Irawan, and D. Rosiyadi, “Kota Jakarta Timur, telp (021) 8462039 dari Universitas Nusa Mandiri; Nusa Mandiri,” RW, 2021. [Online]. Available: http://ejurnal.ubharajaya.ac.id/index.php/JSRCS

[15] D. Susanti and T. Wahyuni, “ANALISIS POTENSI BENCANA ALAM TANAH LONGSOR KABUPATEN MAJALENGKA MENGGUNAKAN ALGORITMA NAÏVE BAYES CLASSIFIER,” INFOTECH journal, vol. 9, no. 2, pp. 299–306, Jul. 2023, doi: 10.31949/infotech.v9i2.5645.

[16] “garuda2346869”.

[17] M. A. Wicaksono, C. Rudianto, and P. F. Tanaem, “Rancang Bangun Sistem Informasi Arsip Surat Menggunakan Metode Prototype,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 2, Aug. 2021, doi: 10.28932/jutisi.v7i2.3664.

[18] N. Wijaya, “Pendekatan Multidisiplin Ilmu dalam Manajemen Bencana IMPLEMENTATION OF NAIVE BAYES CLASSIFICATION ALGORITHM FOR OCCUPANCY HOUSE DATA STATUS FUND ASSISTANCE REHABILITATION AND RECONSTRUCTION POST OF ERUPTION DISASTERS MERAPI MOUNTAIN 2010.”

[19] A. M. Maksun, Y. A. Sari, and B. Rahayudi, “Analisis Sentimen pada Twitter Bencana Alam di Kalimantan Selatan menggunakan Metode Naïve Bayes,” 2021. [Online]. Available: http://j-ptiik.ub.ac.id

[20] “1169-2975-1-SM”.

[21] “KINERJA ALGORITMA SUPPORT VECTOR MACHINE.”

[22] K. Redaksi, A. Af Supianto, B. Riset dan Inovasi Nasional BRIN, E. Rosana Widasari, and I. Wahyuni, “UB Oicial BITS Webmail UB News Dewan Editor”, doi: 10.25126/jtiik.2023105.

[23] “222-Article Text-1187-1268-10-20200819”.

[24] M. Fadawkas Oemarki, M. Dimas Mufti Baskara, and I. Ernawati, “PERBANDINGAN AKURASI METODE SUPPORT VECTOR MACHINE DAN K- NEAREST NEIGHBOUR DALAM PREDIKSI CURAH HUJAN POTENSI BANJIR,” 2024. [Online]. Available: https://dataonline.bmkg.go.id/home.

[25] H. Tantyoko, D. Kartika Sari, and A. R. Wijaya, “PREDIKSI POTENSIAL GEMPA BUMI INDONESIA MENGGUNAKAN METODE RANDOM FOREST DAN FEATURE SELECTION,” 2023. [Online]. Available: http://jom.fti.budiluhur.ac.id/index.php/IDEALIS/indexHenriTantyoko|http://jo m.fti.budiluhur.ac.id/index.php/IDEALIS/index|

[26] G.-H. Di, S. Utara, M. Sinambela , and Y. S. Suharini, “PENDEKATAN AI DAN DATA SAINS DALAM BENCANA,” vol. 4, no. 1, 2024, doi:10.46880/tamika.Vol4No1.pp152-158.

[27] S. Untuk, P. Bencana, B. Di, L. Basah, and M. R. Faisal, “PEMANFAATAN MACHINE LEARNING SEBAGAI SENSOR BERBASIS MEDIA,” 2023. [Online]. Available: https://www.researchgate.net/publication/372677757

[28] V. J. Rivaldo, T. A. Y. Siswa, and W. J. Pranoto, “Perbaikan Akurasi Naïve Bayes dengan Chi-Square dan SMOTE Dalam Mengatasi High Dimensional dan Imbalanced Data Banjir,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 8, no. 3, p. 1656, Jul. 2024, doi: 10.30865/mib.v8i3.7886.

[29] D. Firdaus, “Penggunaan Data Mining dalam Kegiatan Sistem Pembelajaran Berbantuan Komputer,” 2017.

Downloads

Published

2025-07-12

How to Cite

Flood Prediction with Naive Bayes Method. (2025). Technovasia: Journal of Technology & Computer Research in Innovation, Science, and Applications, 1(1), 10-17. https://journal-iam.com/index.php/technovasia/article/view/21