Systematic Literature Review: Customer Segmentation Analysis in the Retail Industry for Marketing Strategy Optimization
Keywords:
Systematic Literature Review, Segmentation, Association, K-Means, FP-Growth, RFMAbstract
Customer segmentation is a crucial strategy in the retail industry to enhance marketing effectiveness and understand customer needs. This study adopts a Systematic Literature Review (SLR) approach using the PRISMA framework to analyze research related to customer segmentation from 2019 to 2024. The objective of this study is to evaluate the most frequently used clustering models and association patterns and identify the models that deliver the best performance in supporting marketing strategies. The findings indicate that K-Means is the most commonly used clustering model and excels in generating accurate and efficient customer clusters. Meanwhile, FP-Growth proves to be the best association rule model due to its efficiency in handling large datasets and identifying relevant association rules. This study also identifies several research gaps, including the lack of integration between RFM, K-Means, and FP-Growth models, as well as the limited practical implementation of segmentation and association results in marketing strategies such as up-selling and cross-selling. As a solution, this study proposes an integrated model combining RFM, K-Means, and FP-Growth to provide deeper and more actionable insights in supporting data-driven marketing strategies. This model is expected to enhance customer retention, marketing effectiveness, and operational efficiency in the retail industry.
Downloads
References
[1] D. Grewal, A. L. Roggeveen, and J. Nordfält, “The Future of Retailing,” Journal of Retailing, vol. 93, no. 1, pp. 1–6, Mar. 2017, doi: 10.1016/j.jretai.2016.12.008.
[2] Islamiyah, P. L. Ginting, N. Dengen, and M. Taruk, “Comparison of Priori and FP-Growth Algorithms in Determining Association Rules,” in International Conference on Electrical, Electronics and Information Engineering (ICEEIE), IEEE, 2019. doi: 10.1109/ICEEIE47180.2019.8981438.
[3] S. Genjang Setyorini, K. Sari, L. Rahma Elita, and S. A. Putri, “Analisis Keranjang Pasar Menggunakan Algoritma K-Means dan FP-Growth pada PT. Citra Mustika Pandawa,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 1, no. 1, pp. 41–46, Apr. 2021.
[4] E. Febrianty, L. Awalina, and W. I. Rahayu, “Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail,” Jurnal Teknologi dan Informasi (JATI), vol. 13, 2023, doi: 10.34010/jati.v13i2.
[5] A. Wicaksono, F. A. Bachtiar, and N. Y. Setiawan, “Segmentasi Pelanggan Menggunakan Fuzzy C-Means Clustering berdasarkan RFM Model pada E-Commerce (Studi Kasus: E-Commerce XYZ),” 2021. [Online]. Available: http://j-ptiik.ub.ac.id
[6] S. Wahyuni, S. Informasi, F. Ilmu Komputer, U. Mulia Jalan Pahlawan No, A. Kota Samarinda, and P. Kalimantan Timur, “SEGMENTASI PELANGGAN BERDASARKAN ANALISIS RECENCY, FREQUENCY, MONETARY MENGGUNAKAN ALGORITMA K-MEANS,” Jurnal SimanteC, vol. 12, no. 1, Dec. 2023.
[7] S. Bahri, D. Marisa Midyanti, and P. Korespondensi, “Penerapan Metode K-Medoids Untuk Pengelompokan Mahasiswa Berpotensi Drop Out,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 10, no. 1, pp. 165–172, 2023, doi: 10.25126/jtiik.2023106643.
[8] M. Fathurrahman, A. Rizky Pratama, T. Al-Mudzakir, and U. Buana Perjuangan, “Perbandingan Algoritma Apriori Dan Fp Growth Terhadap Market Basket Analysis Pada Data Penjualan Bakery,” KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 4, no. 2, pp. 266–274, 2023.
[9] M. Raihan and Sutisna, “Analisis Perbandingan Algoritma Apriori dan FP-Growth untuk Menentukan Strategi Penjualan Pada Maestro Jakarta Cafe & Space,” 2024. [Online]. Available: https://journal.stmiki.ac.id
[10] Nabiilah, M. Afdal, R. Novita, and Mustakim, “Implementasi Association Rule Untuk Rekomendasi Strategi Up-Selling dan Cross-Selling Produk Menggunakan FP-Growth,” Indonesian Journal of Computer Science, vol. 13, no. 3, 2024.
[11] F. Achmad, O. Nurdiawan, and Y. A. Wijaya, “Analisa Pola Transaksi Pembelian Konsumen Pada Toko Ritel Kesehatan Menggunakan Algoritma Fp-Growth,” Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 1, 2023, [Online]. Available: www.researchgate.net
[12] H. Snyder, “Literature review as a research methodology: An overview and guidelines,” J Bus Res, vol. 104, pp. 333–339, Nov. 2019, doi: 10.1016/j.jbusres.2019.07.039.
[13] M. J. Page et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” Mar. 29, 2021, BMJ Publishing Group. doi: 10.1136/bmj.n71.
[14] A. Farzana Sukaryo and R. Mulyati Mustika Sari, “SYSTEMATIC LITERATURE REVIEW : KEMAMPUAN NUMERASI SISWA DALAM PEMBELAJARAN MATEMATIKA Corresponding Author *,” Jurnal Theorems (The Original Reasearch Of Mathematics), vol. 8, no. 2, 2024.
[15] N. R. Maulina, I. Surjandari, and A. M. M. Rus, “Data Mining Approach for Customer Segmentation in B2B Settings using Centroid-Based Clustering,” Institute of Electrical and Electronics Engineers(IEEE), 2019.
[16] K. Tabianan, S. Velu, and V. Ravi, “K-Means Clustering Approach for Intelligent Customer Segmentation Using Customer Purchase Behavior Data,” Sustainability (Switzerland), vol. 14, no. 12, Jun. 2022, doi: 10.3390/su14127243.
[17] R. Punhani, V. P. S. Arora, A. Sai Sabitha, and V. K. Shukla, “Segmenting e-commerce customer through data mining techniques,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jan. 2021. doi: 10.1088/1742-6596/1714/1/012026.
[18] M. Abu Sufian Mozumder et al., “Optimizing Customer Segmentation in the Banking Sector: A Comparative Analysis of Machine Learning Algorithms,” Journal of Computer Science and Technology Studies, Aug. 2024, doi: 10.32996/jcsts.2024.6.4.1.
[19] P. Anitha and M. M. Patil, “RFM model for customer purchase behavior using K-Means algorithm,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 5, pp. 1785–1792, May 2022, doi: 10.1016/j.jksuci.2019.12.011.
[20] A. J. Christy, A. Umamakeswari, L. Priyatharsini, and A. Neyaa, “RFM ranking – An effective approach to customer segmentation,” Journal of King Saud University - Computer and Information Sciences, vol. 33, no. 10, pp. 1251–1257, Dec. 2021, doi: 10.1016/j.jksuci.2018.09.004.
[21] E. Y. L. Nandapala and K. P. N. Jayasena, “The practical approach in Customers segmentation by using the K-Means Algorithm,” in 2020 IEEE 15th International Conference on Industrial and Information Systems, ICIIS 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Feb. 2020, pp. 344–349. doi: 10.1109/ICIIS51140.2020.9342639.
[22] J. Wu et al., “Retracted: An Empirical Study on Customer Segmentation by Purchase Behaviors Using a RFM Model and K-Means Algorithm,” Math Probl Eng, vol. 2023, Aug. 2023, doi: 10.1155/2023/9873736.
[23] V. H. Antonius and D. Fitrianah, “Enhancing Customer Segmentation Insights by using RFM + Discount Proportion Model with Clustering Algorithms,” IJACSA) International Journal of Advanced Computer Science and Applications, vol. 15, no. 3, 2024, [Online]. Available: www.ijacsa.thesai.org
[24] A. Suryaputra Paramita and T. Hariguna, “Comparison of K-Means and DBSCAN Algorithms for Customer Segmentation in E-commerce,” Journal of Digital Market and Digital Currency, vol. 1, no. 1, pp. 43–62, Jun. 2024.
[25] R. Andika Johan, R. Himilda, and N. Auliza, “Penerapan Metode Association Rule Untuk Strategi Penjualan Menggunakan Algoritma Apriori,” Jurnal Teknologi Informatika (J-TIFA), vol. 2, no. 2, pp. 1–7, Sep. 2019.
[26] M. Arif Saifudin, H. Endah Wahanani, and A. Junaidi, “IMPLEMENTASI ALGORITMA ASOSIASI FP-GROWTH DAN KLASIFIKASI K-MEANS TERHADAP POLA PEMBELIAN KONSUMEN DI MARKETPLACE SHOPEE,” 2024.
[27] H. Syukron, M. Fauzi Fayyad, F. Junita Fauzan, Y. Ikhsani, and U. Rizkya Gurning, “Perbandingan K-Means K-Medoids dan Fuzzy C-Means untuk Pengelompokan Data Pelanggan dengan Model LRFM,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 2, no. 2, pp. 76–83, Oct. 2022.
[28] M. Mariko and U. Amikom Yogyakarta, “Perbandingan Algoritma Apriori Dan Algoritma Fp-Growth Untuk Rekomendasi Item Paket Pada Konten Promosi,” EXPLORE, vol. 11, no. 2, 2021.
[29] Faris Syaifulloh, Eva Yulia Puspaningrum, and M. Muharram Al Haromainy, “Analisis Pola Pembelian Pelanggan Menggunakan Algoritma Squeezer, Apriori dan FP-Growth Pada Toko Bangunan,” Modem : Jurnal Informatika dan Sains Teknologi., vol. 2, no. 3, pp. 134–147, Jul. 2024, doi: 10.62951/modem.v2i3.153.
[30] R. Najmil Huda, R. Fitriadi, and A. Wibowo, “OPTIMIZATION PRODUCT RECOMMENDATION USING K-MEANS, AGGLOMERATIVE CLUSTERING AND FP-GROWTH ALGORITHM,” Jurnal Teknik Informatika (JUTIF), vol. 5, no. 4, pp. 953–960, Jul. 2024, doi: 10.52436/1.jutif.2024.5.4.1901.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Yanda Rizky Prasetiya, Firlan Prayoga (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.










