AI-INTEGRATED PLANT DISEASE SCANNING APPLICATIONS: A SYSTEMATIC LITERATURE REVIEW

Authors

  • Ujang Selamat Esa Unggul University Author

Keywords:

AI, plant, machine learning, scan, agriculture, plant , disease

Abstract

The evolution of digital technology has revolutionized the modern agricultural landscape, gradually incorporating the detection and management of plant diseases. In this work, we aimed to provide a systematic review addressing the state-of-the-art regarding the application of plant disease scanning embedded in artificial intelligence, subsistent from the newest literature as possible. The literature reviews from multiple sources revealed that Big Data and machine learning algorithms like Convolutional Neural Network (CNN) enhance the efficiency of plant disease identification. It has also been proven that integrated scanning systems in combination with the Internet of Things are able to monitor the conditions of plants in real time and provide accurate management recommendations. The integration of AI, IoT, and data analytics provide smart plant to achieve faster, effective, and accurate plant health management data mining through machine-learning methods.

Downloads

Download data is not yet available.

References

[1] A. S. Sedayu and A. Andriyansah, “Pemanfaatan Big Data pada Instansi Pelayanan Publik,” Nov. 02, 2021.

[2] K. I. Nauval and S. Lestari, “Implementasi Deteksi Objek Penyakit Daun Kentang dengan Metode Convolutional Neutral Network,” Nov. 19, 2022.

[3] H. Afzaal et al., “Detection of a Potato Disease (Early Blight) Using Artificial Intelligence,” Jan. 25, 2021, Multidisciplinary Digital Publishing Institute. doi: 10.3390/rs13030411.

[4] D. Mazumder, S. Nandy, and P. Sarkar, “6 Early detection of crop diseases using machine Learning based intelligent techniques: a review,” De Gruyter eBooks. De Gruyter, p. 115, Apr. 08, 2020. doi: 10.1515/9783110610987-008.

[5] T. Singh, K. V. Kumar, and S. Bedi, “A Review on Artificial Intelligence Techniques for Disease Recognition in Plants,” IOP Conference Series Materials Science and Engineering, vol. 1022, no. 1. IOP Publishing, p. 12032, Jan. 01, 2021. doi: 10.1088/1757-899x/1022/1/012032.

[6] K. H. Coble, A. K. Mishra, S. Ferrell, and T. Griffin, “Big Data in Agriculture: A Challenge for the Future,” Oct. 26, 2017, Wiley. doi: 10.1093/aepp/ppx056.

[7] M. E. Sykuta, “Big Data in Agriculture: Property Rights, Privacy and Competition in Ag Data Services,” Jun. 15, 2016, International Food and Agribusiness Management Association. doi: 10.22004/ag.econ.240696.

[8] M. Pathan, N. Patel, H. Yagnik, and M. Shah, “Artificial cognition for applications in smart agriculture: A comprehensive review,” vol. 4. Elsevier BV, p. 81, Jan. 01, 2020.

[9] A. Lytos, Θ. Λάγκας, P. Sarigiannidis, M. Zervakis, and G. Livanos, “Towards smart farming: Systems, frameworks and exploitation of multiple sources,” Feb. 12, 2020, Elsevier BV. doi: 10.1016/j.comnet.2020.107147.

[10] J. C. S. Thomas, S. Manikandarajan, and T. K. Subha, “AI based pest detection and alert system for farmers using IoT,” Jan. 01, 2023, EDP Sciences.

[11] G. Kruseman, “CGIAR platform for big data in agriculture,” Jan. 01, 2017. Accessed: Jan. 2025. [Online]. Available: https://repository.cimmyt.org/xmlui/handle/10883/19222

[12] A. Kamilaris, A. Kartakoullis, and F. X. Prenafeta‐Boldú, “A review on the practice of big data analysis in agriculture,” Computers and Electronics in Agriculture, vol. 143. Elsevier BV, p. 23, Oct. 13, 2017. doi: 10.1016/j.compag.2017.09.037.

[13] A. Abade, P. A. Ferreira, and F. de B. Vidal, “Plant diseases recognition on images using convolutional neural networks: A systematic review,” vol. 185. Elsevier BV, p. 106125, Apr. 30, 2021.

[14] M. Shoaib et al., “An advanced deep learning models-based plant disease detection: A review of recent research,” Frontiers in Plant Science, vol. 14. Frontiers Media, Mar. 21, 2023. doi: 10.3389/fpls.2023.1158933.

[15] D. Calabro’, M. L. Pasini, N. Ferro, and S. Perotto, “A deep learning approach for detection and localization of leaf anomalies,” Jan. 01, 2022, Cornell University.

[16] G. Lu et al., “AGI for Agriculture,” Jan. 01, 2023, Cornell University. doi: 10.48550/arXiv.2304.

[17] A. Jafar, N. Bibi, R. A. Naqvi, A. Sadeghi‐Niaraki, and D. Jeong, “Revolutionizing agriculture with artificial intelligence: plant disease detection methods, applications, and their limitations,” Mar. 13, 2024, Frontiers Media. doi: 10.3389/fpls.2024.1356260.

[18] C. H. Bock, J. G. A. Barbedo, E. M. D. Ponte, D. Bohnenkamp, and A. Mahlein, “From visual estimates to fully automated sensor-based measurements of plant disease severity: status and challenges for improving accuracy,” Apr. 26, 2020, BioMed Central. doi: 10.1186/s42483-020-00049-8.

[19] M. Xu et al., “Embrace Limited and Imperfect Training Datasets: Opportunities and Challenges in Plant Disease Recognition Using Deep Learning,” Jan. 01, 2023, Cornell University. doi: 10.48550/arXiv.2305.

[20] J. Zhang et al., “Monitoring plant diseases and pests through remote sensing technology: A review,” Computers and Electronics in Agriculture, vol. 165. Elsevier BV, p. 104943, Aug. 20, 2019. doi: 10.1016/j.compag.2019.104943.

[21] K. M. Gold, “Plant Disease Sensing: Studying Plant-Pathogen Interactions at Scale,” Nov. 16, 2021, American Society for Microbiology. doi: 10.1128/msystems.01228-21.

[22] L. Mohimont, F. Alin, N. Vaillant‐Gaveau, and L. A. Steffenel, “Lite CNN Models for Real-Time Post-Harvest Grape Disease Detection,” in Ambient intelligence and smart environments, IOS Press, 2022. doi: 10.3233/aise220029.

[23] D. Kaufman and L. L. V. Boas, “Visão computacional na agricultura: APIs de detecção e reconhecimento de doenças das plantas,” May 26, 2020. doi: 10.23925/1984-3585.2019i20p96-112.

[24] Y. Ampatzidis, “Applications of Artificial Intelligence for Precision Agriculture,” Dec. 20, 2018, George A. Smathers Libraries. doi: 10.32473/edis-ae529-2018.

[25] K. I. Nauval and S. Lestari, “Implementasi Deteksi Objek Penyakit Daun Kentang dengan Metode Convolutional Neutral Network,” Nov. 19, 2022. doi: 10.31102/jatim.v3i2.1576.

[26] R. Sharma, N. Kumar, and B. B. Sharma, “Applications of Artificial Intelligence in Smart Agriculture: A Review,” Lecture notes in electrical engineering. Springer Science+Business Media, p. 135, Jan. 01, 2022. doi: 10.1007/978-981-16-8248-3_11.

[27] E. Elbaşi et al., “Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review,” Dec. 26, 2022, Institute of Electrical and Electronics Engineers. doi: 10.1109/access.2022.3232485.

[28] M. Xu et al., “Embrace Limited and Imperfect Training Datasets: Opportunities and Challenges in Plant Disease Recognition Using Deep Learning,” Jan. 01, 2023, Cornell University.

[29] G. Lu et al., “AGI for Agriculture,” Jan. 01, 2023, Cornell University.

[30] C. H. Bock, J. G. A. Barbedo, E. M. D. Ponte, D. Bohnenkamp, and A. Mahlein, “From visual estimates to fully automated sensor-based measurements of plant disease severity: status and challenges for improving accuracy,” Apr. 26, 2020, BioMed Central.

[31] R. Rahmadian and M. Widyartono, “Penerapan Machine Vision untuk Sistem Panen Otomatis di Robot Agrikultur,” Jun. 10, 2020, State University of Surabaya. doi: 10.26740/jieet.v4n1.p47-52.

Downloads

Published

2025-03-30

How to Cite

AI-INTEGRATED PLANT DISEASE SCANNING APPLICATIONS: A SYSTEMATIC LITERATURE REVIEW. (2025). Technovasia, 1(1), 57-66. https://journal-iam.com/index.php/technovasia/article/view/29